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ABSTRACT 

 

The discovery of quasi-periodic atomic order in the crystalline state has uncovered an exciting new class of symmetries that has 
never been explored. Quasi-periodic structures offer unique opportunities for investigating questions related to their acoustical 
behavior because of their non-periodic translational order and self-similar properties. Their unique long-range non-periodic 
formations have the ability to diffuse and orchestrate the flow of sound energy in many unique ways; offering intriguing potential 
for innovating a new wave of optimized sound diffusers. One key limitation with available periodic diffusers is that their repeating 
logic creates repetitive energy loops, which significantly reduce their ability to uniformly disperse sound energy. Quasi-periodic 
geometry can mitigate such limitation. By encapsulating an infinite variety of distinct profiles in all directions, quasi-periodic 
surfaces can eliminate the formation of bundled or looped reflections; considerably enhancing the ability of the diffuser to 
uniformly disperse sound energy. To investigate this hypothesis, the diffusion quality of a quasi-periodic surface is compared to 
the diffusion performance of Schroeder’s 2D Quadratic Residue Diffuser. The normalized diffusion coefficients and polar response 
plots were calculated for both surfaces. Results show that the diffusion quality of the tested quasi-periodic surface is superior to 
the diffusion performance of the 2D Quadratic Residue Diffuser. 

 

Keywords: Architecture acoustics, Diffusion quality, Quasi-periodic surfaces, Schroeder’s Quadratic Residue Diffuser. 

 

 

1.0 INTRODUCTION 

The discovery of quasicrystals in the 1980s has 
uncovered an exciting new class of geometric 
structures that was not known before (Shechtman et 
al. 1984). The atomic arrangements of this new state 
of matter exhibit a global long-range non-periodic 
translational order, which was thought to be 
forbidden for the crystalline state in the traditional 
framework of crystallography. These formations can 
fill the space ad infinitum without repeating the same 

formations (Levine and Steinhardt 1984; Socolar, 
Steinhardt and Levine 1985; Levine and Steinhardt 
1986; Ishii and Fujiwara 2008). One key ingredient of 
the quasi-periodic order is the multi-level hierarchical 
nature, which allows the same patterns to recur at 
multiple scales. Three decades after their initial 
discovery, hundreds of quasicrystals have been 
documented; exposing a wealth of quasi-periodic 
symmetries with untapped potentials (Jazbec 2009; 
MacIá 2006; Yamamoto and Takakura 2008; Dubois 
2012).  

http://arcc-arch.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
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Aside from their astonishing visual and physical 
qualities, quasi-periodic formations exhibit unusual 
structural properties, which can be ideally suited for 
investigating new applications in architecture and 
design.  These systems could potentially provide a 
rich source of performative geometries for innovating 
new structures, systems, materials, patterns, surfaces 
and forms. One intriguing potential of their unique 
quasi-periodic formations is the ability to orchestrate 
the flow of light or sound energy, which could find 
applications across a wide range of light and sound-
based technologies (Roichman and Grier 2005; 
Steurer and Widmer 2007; Mikhael et al. 2010; 
Schmiedeberg and Stark 2012; Martinsons et al. 2014; 
Dong et al. 2015; Boriskina 2015; Schmiedeberg et al. 
2017). In this context, this paper is focused 
specifically on investigating aspects of the acoustical 
diffusion behavior of quasi-periodic formations.  

One key challenge associated with designing effective 
surface diffusers is the ability to disperse sound 
energy uniformly over the diffused sound field while 
avoiding the formation of orchestrated, bundled or 
looped reflections (D'Antonio and Cox 2004, 
2009,2017). It is assumed that better diffusion occurs 
when every position in the diffuse sound field 
receives the same density of the reflected energy 
(D'Antonio and Cox 2004, 2009, 2017; Fay 2013; 
Kleiner and Tichy 2014).  However, it is a common 
practice to design diffusers based on periodic 
repetition of a limited number of basic shapes, which 
often creates repetitive energy loops; significantly 
reducing the ability of the diffuser to uniformly 
disperse sound energy (Lam 1999; D'Antonio and Cox 
2004; Cox and D’Antonio 2009; Hughes et al. 2010). 
To mitigate the periodicity problem some researchers 
turned their attention to investigate random or 
pseudo-random designs (Angus 1995; Hughes et al. 
2010). While this approach can eliminate periodicity, 
random arrangements are hard to visually encode or 
predict and often requires the manufacturing of the 
large number of shapes which make them costs 
prohibitive (Cox and D’Antonio 2004).  Other studies 
used modulation schemes of one or two basic shapes 
and relied on visual appearance, random sequences, 
number theory, or optimization programs to arrange 
the units in a non-repeating manner (Angus 1995, 
D'Antonio and Cox 2004; Cox and D’Antonio 2009).  
While such schemes can optimize the number of basic 
shapes, their pseudo-random logic is often dictated 
by the shape of the basic units (i.e. squares, triangles 
or hexagons) which can limit the range of possible 

arrangements and design variations.  Moreover, 
these geometric designs are rigid and their visual 
appearance is often ignored in the pursuit of more 
functional attributes; making them unattractive 
options for architectural environments.  Another 
modulation approach utilizes Fibonacci one-
dimensional quasi-periodic sequence to arrange the 
basic repeating units (Arau-Puchades 2016). 
However, these arrangements exhibit quasi-
periodicity only in one direction and their design 
choices and aesthetics can be very limited.  Recently, 
Lee and colleagues (Lee, Tsuchiya and Sakuma 2018) 
investigated variations of surface profiles designed by 
rearranging the thick and thin rhombuses in Penrose 
tiling. After comparing tile arrangements (symmetric, 
asymmetric and random), they found that the effect 
was relatively small when comparing Penrose tiling 
with random tiling.  This suggest that quasi-periodic 
formations have advantages over periodic 
formations. However, their study did not compare 
the performance of Penrose-type surfaces with 
available diffusers.   

Based on this review, the ideal scheme for designing 
surface diffusers requires that periodicity be removed 
from all directions and using a limited number of 
manufactured shapes while at the same time allowing 
for a wider space for creativity and design aesthetics. 
This paper argues that three-dimensional quasi-
periodic structures offer unique opportunities for 
satisfying these requirements. In addition, their self-
similarity provides opportunities for designers to 
include detailed profiles at multiple scales for 
optimizing performance (Cox and D’Antonio 1997; 
D’Antonio and Konnert 1992; Cox and D’Antonio 
2004, 2009,2017; Qian 2001; Bradley et al. 2011; Ning 
and Zhao 2017; Ajlouni 2017a).    

Today, a major roadblock is challenging designers to 
fully engage in investigating the use of quasi-periodic 
formations for acoustical surface designs, which is 
associated with the difficulties to generate the 
complicated quasi-periodic formations. 
Unfortunately, most of the available structural 
models are based on complicated or abstract 
mathematics (i.e. matching, substitution, inflation, 
deflation, matching, projection, etc.) (Penrose 1974; 
De Bruijn 1981a; De Bruijn 1981b; De Bruijn 1981c; 
Bak 1986; Socolar, Steinhardt and Levine 1985; Lord, 
Ranganathan and Kulkarni 2000; Abe, Yan and 
Pennycook 2004; Madison 2015a; Madison, 2015b), 
which present substantial limitations for researchers 
especially in the non-technical fields.  Fortunately, the 
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discovery of historical patterns exhibiting quasi-
periodic formations is providing new insights into 
understanding these complicated structures 
(Makovicky 1992; Makovicky, P´erez and Hach-Al´ı 
1998; Rigby 2005; Lu, and Steinhardt 2007; Saltzman 
2008; Makovicky and Makovicky 2011). Derived from 
these traditional principles, a simple proportional 
structural model for generating these complicated 
formations has been described (Ajlouni2012; 
Ajlouni2013; Ajlouni2017b; Ajlouni2018). This paper 
utilizes this new approach to generate the quasi-
periodic surface design tested by this research.  

 

2.0 BACKGROUND 

In the context of architectural design, the challenges 
associated with the acoustical prediction can be 
attributed to the interplay of a complex system of 
competing factors including, space size, proportion, 
geometry, material properties and surface details. 
One of the critical drivers of acoustical behavior 
relates to the design of architectural surfaces, which 
primarily affect the way in which sound reflections 
propagate through space. If such reflections are not 
carefully steered, they can create strong secondary 
sound patterns; often causing flutter echoes1 or comb 
filtering2 (Cox and D'Antonio 2009). With proper 
acoustical design of surface geometry, sound 
reflections can be effectively tamed by evenly 
diffusing the reflected sound energy so it is less 
focused or coherent (Fay 2013). The behavior of 
sound reflections off different surface geometry and 
their effect on shaping the spatial auditory 
atmosphere have been investigated in many 
architectural contexts (Cox and Lam 1993; Cox 1996; 
Embrechts, Archambeau and Stan 2001; Funkhouser 
et al. 2002). Today, a limited range of contemporary 
sound diffusers are designed with certain geometric 
profiles to either scatter the sound spatially, 
temporally or both (Farner 2014). However, 
depending on their surface designs, arrangements 
and depth profiles, the performance of sound 
diffusers is often limited by their ability to respond to 
the targeted sound wavelength (Everest and 
Pohlmann 2009; Bradley et al. 2011). Only a limited 
number of available diffusers are designed to 
effectively respond to a range of wavelengths. Some 

                                                                 

1 Sound vibrations are caused when energy is trapped 
within a reflection cycle between two surfaces.   

of the most functional diffusers were invented in 
1970s by Manfred Schroeder, who used number 
theory to predict the optimal diffusion for a surface 
profile (Schroeder 1975; Schroeder 1979). With the 
introduction of Schroeder’s Quadratic Residue 
Diffusers (QRD), it was possible for the first time to 
measure the complete diffuse reflection based on the 
grating loops produced by the periodic phase grating 
energy (Cox et al. 2006). Schroeder’s diffusers are 
designed with a sequence of wells of the same width 
and different depths and can be arranged in one or 
multi-dimensional devices (Cox and D'Antonio 2004). 
Since their introduction, Schroeder’s diffusers have 
been widely adopted in technical and architectural 
acoustics (Cox and D'Antonio 2004, 2009, 2017; 
D’Antonio and Cox 2000; Cox and Lam 1994; 
Hargreaves, Cox and Lam 2000). However, in terms of 
repeating the optimized sequence “the curse of 
periodicity” presents a major limitation (Cox and 
D'Antonio 2004, 248). Moreover, at low frequencies, 
Schroeder diffusers can cause high absorption due to 
the resonance created in the deep well system 
(Fujiwara 1995). Aesthetically, the visual appearance 
of Schroeder’s irregular well arrangements can be 
challenging for designers (Zhu et al. 2017). Their 
protruding profiles make them unattractive options 
for architectural environments. Today, the lack of 
new designs that can complement contemporary 
architecture presents a major challenge (Cox et al. 
2006). Only a limited number of available diffusers 
are considered acceptable for architectural spaces. 
Computer calculations are often utilized to 
numerically design and optimize these surfaces (Cox 
and D’antonio 2009; Lee and Sakuma 2015; Henham, 
Holloway and Panton 2016). However, such design 
process is limited to the manipulation of some basic 
design elements and is often time intensive, as it 
evaluates unit by unit basis. With the limited 
availability of aesthetically acceptable diffusers for 
architectural acoustics, it is critical that new and 
original approaches are proposed.  The need for 
innovative designs that can satisfy both the acoustic 
and visual requirements is therefore essential. 

 

 

2 The amplification of certain sound frequencies while 
reducing others.   
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3.0 METHODS 
3.1 Research Design 

The aim of this research is to explore the potential of 
using quasi-periodic formations to design new surface 
diffusers. The hypothesis argues that because of their 
non-periodic translational nature, quasi-periodic 
surfaces offer many advantages over periodic designs 
in terms of eliminating the creation of repetitive 
energy loops and enhancing the ability of the diffuser 
to uniformly disperse sound energy. In this research, 
a new type of quasi-periodic surface diffuser based on 
2D Penrose tiling formations is developed and tested.  
To establish a base-performance criterion for 
comparison, Schroeder’s 2D Quadratic Residue 
Diffuser (QRD) with similar depth profile is also 
tested. The ISO standard metrics (Normalized 
Diffusion Coefficient and Spatial Response Plots) are 
used to measure the quality of the diffuse reflection 
caused by both surfaces. These metrics are used to 
evaluate the quality of the diffusers in terms of the 
spatial uniformity of the reflected sound energy (Cox 
et al. 2006). In particular, the Normalized Diffusion 
Coefficient provides a measure of the spatial 
distribution of the reflected sound energy and it was 
developed with the primary goal of defining an 
accurate ISO standard metrics for evaluating the 
worth of surface diffusers.  It can be used as a tool for 
ranking the quality of different diffusers and is 
calculated as a single value between 0 and 1, which 
measures the uniformity of the reflected energy. The 
value of 1 indicates that the reflected energy is evenly 
distributed across all directions, while a value of 0 
indicates that the reflected energy is reflected only in 
one direction. 

3.2 Instrumentation  

The two-dimensional acoustics simulation software 
AFMG Reflex was used to model the diffusion of 
sound wave incident upon the defined surface 
profiles. The numerical method calculates the 
diffusion properties of the sample surfaces based on 
the Boundary Element Method (BEM). The diffusion 
coefficients are plotted as frequency response graphs 
and the reflective properties are displayed as a polar 
response graph for a specific angle of incidence and 
frequency of a sound wave (AFMG 2018).  

 

 

 

3.3 Target population 

For the quasi-periodic surface designs, the general 
target population includes all categories of quasi-
periodic symmetries including 5- fold, 7-fold, 8-fold, 
9-fold, 10-fold and 12-fold. However, for the purpose 
of conducting this research, numerical measurements 
specifically target 5-fold three-dimensional quasi-
periodic structures, with the assumption that it 
provides a true representative sample of the general 
quasi-periodic population.  

For the periodic surface design, Schroeder’s 2D 
Quadratic Residue Diffuser (QRD) is used to establish 
a base for comparison with the assumption that it 
provides a true representative sample of the general 
periodic population.  This is a two-plane diffuser 
formed by arranging series of wells in two directions 
which generate diffuse reflections in three-
dimensional (3D) space. In this paper, a sequence 
array of 7X7 quadratic residue diffuser is used as the 
basic unit for the periodic arrangement. 

3.4 Generating sample profiles 
3.4.1: Quasi-periodic geometry 

The number of the quasi-periodic designs that can be 
generated based on five-fold rotational symmetry can 
be extensive depending on the underlying structural 
order and the internal geometry. For the purpose of 
this research, three-dimensional quasi-periodic 
surface profiles are generated based on 5-fold quasi-
periodic Penrose tiling using the thin and thick 
rhombus (Figures 1) (Penrose 1974). While this 
research focuses specifically on Penrose designs, the 
underlying goal is to develop a general method for 
testing other types of quasi-periodic structures. 

Penrose tiling is a non-periodic tiling discovered by 
mathematical physicist Roger Penrose in the 1970s 
(Penrose 1974). In a five-fold rotational symmetry, 
Penrose discovered that by using only two tiles 
constructed based on the irrational number Phi (φ = 
1.618033988749895), a surface can be tiled infinitely 
without repeating the same formations (Figure1). 
Using the thin and thick rhombus, the infinite quasi-
periodic Penrose tiling can be assembled according to 
very specific local matching rules (Figures1 and 2). 
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The construction process of 5-fold Penrose tiling 
pattern is governed by a proportional system that is 
derived from the traditional method of using a 
compass and a straightedge (Ajlouni2011). A 
framework of nested decagrams serves as the 
underlying hidden grid for guiding the construction 
process of the quasi-periodic system (Figure 3). The 
infinite Penrose empire is constructed by building a 
progression of nested sequences, in which, each 
decagram is built to the previous level.  This 
framework is constructed by drawing a polar array of 
lines through connecting points of equal distances on 
the initial decagon.  The framework grows based on 
the Golden ratio. If we denote the radius of the nth 
decagram by radn and the next larger radius by radn+1, 
then the ratio radn+1/radn is equal to φ = (1+√5)/2.  
(Equation 1). This progression of nested decagrams 
serves a critical role in maintaining a relational aspect 
ratio between the different levels, which is the key to 
resolving the quasi-periodic structure.  

   n0 → n∞,       
𝒓𝒂𝒅𝒏+𝟏

𝒓𝒂𝒅𝒏
 =  (𝟏 + √𝟓)/𝟐    [1]     

The process for constructing the first-level hierarchy 
for Penrose pattern is demonstrated in Figure 3. Each 
cluster in the first hierarchy is composed of four 
building units; two ‘seed’ units with five-fold 
symmetry and their two fragments (Figure 3a). The 
sizes of the ‘seed’ units and their fragments are 
proportional to the size of the framework and is 
derived from the progression sequence of the nested 
decagrams (Figure 3c). The different combinations of 
the ‘seed’ units and their ‘fragments’ are shown in 
Figure 3b. The locations of the ‘seed’ units are 
determined by the intersection points generated by 
the framework (Figure 3d). The positions of the 
‘fragments’ are guided by the position of the ‘seed’ 
units. The final arrangement of the first hierarchy of 
Penrose pattern is shown in Figure 3e. The 
construction of the global empire of the quasi-
periodic formation requires building a progression of 

 

 

Figure 1 – Using the thin and thick rhombus, which are constructed based on Phi, quasi-periodic Penrose tiling can be 
assembled according to specific local matching rules.  

 

 

Figure 2 – An extended formations of Penrose quasi-periodic tiling using the thin and thick rhombus. 
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multi-level hierarchical clusters, in which the higher 

 

Figure 3 – A framework of nested decagrams based on φ, serves as the underlying hidden grid for guiding the construction 
process of the quasi-periodic system. 

 

 

Figure 4 – The process for constructing the second-level hierarchy for Penrose tiling pattern. 
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order cluster is built on the lower order. In this 
system, the construction of the next higher-level is 
governed by a new generation of the nested 
decagrams, which grows proportionally according to 
the golden ratio and Fibonacci sequence. 

The process for constructing the second-level 
hierarchy for Penrose pattern is demonstrated in 
Figure 4. In this second level, the final generated 
pattern of the first hierarchy serves as the seed 
cluster for the second hierarchy (Figure 4e). Each 
cluster in the second-level hierarchy is composed of 
four building clusters. The two ‘seed’ clusters (Figure 
4a) and their two fragments (Figure 4b), which are 
used to fill-in the gaps between the main ‘seed’ 
clusters. All units of the second-generation order are 
distributed according to the new generation 
framework of the nested decagrams (Figure 4e). The 
final arrangement of the second hierarchy of Penrose 
pattern is shown in Figure 4f. Accordingly to this 
sequence, generating the next higher-level cluster 
also follows the same process, in which the new 
higher-generation order is built on the previous 

order. An important characteristic of this multi-level 
proportional system is that the same elements of the 
patterns recur at different scales. This is often 
described as ‘self-similarity’ principle, which is the key 
principle in nature. A close-up detail of the generated 
Penrose pattern reveals the inflation rule of the 
second-hierarchy (Figure 5). According to these rules, 
the new generation thin and thick rhombus can be 
broken down to a smaller scale of the same pattern 
based on the golden ratio. In the next section, these 
deflation rules are used to generate the three-
dimensional surface profiles of Penrose patterns.  

3.4.2: Quasi-periodic surface design 

In order to construct the three-dimensional quasi-
periodic (QP) surface design for Penrose tiling, it is 
important to understand that the two-dimensional 
Penrose formations are actually projections of the 
higher three-dimensional space. In this context, the 
thick and thin rhombus can be viewed as projections 

 

Figure 5 – Self-Similarity and deflation-inflation rules of Penrose quasi-periodic tiling pattern. 

 

 

Figure 6 – Left: The golden rhombus. Right: the inflation/deflation rules of Penrose tiling. 
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of the three-dimensional golden rhombus onto the 

 

Figure 7 –Top: The two-dimensional Penrose tiling formations are projections of the golden rhombus in the three-
dimensional space. Bottom: The quasi-periodic surface design is generated by combining the second-level hierarchy of the 
thin and thick rhombus based on the deflation rules. 

 

 

Figure 8 –Rendered views of the quasi-periodic surface (top: vertical light, down: 45-degree light). 
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two-dimensional plane.  The golden rhombus is 
constructed by joining the mid points of the sides of a 
golden rectangle, in which the ratio of the long 
diagonal to the short diagonal equals to Phi (Figure 6). 
By reversing such projection, it is possible to 
reconstruct the three-dimensional surface structure 
of Penrose tiling using the deflation-inflation rules 
deduced in the previous section. The quasi-periodic 
surface design (Figure 7) is then generated by 
combining the second-level hierarchy of the thin and 
thick rhombus based on the deflation rules in Figure 
5. Figure 8 shows different resolutions of the three-
dimensional quasi-periodic surface rendered in 90-
degree light (Figure 8-top) and 45-degree light (Figure 
8-bottom).  Interestingly, these rendered views also 
show visible traces of the Fibonacci bars rotated in 
the five directions. This demonstrates how simple 
rules can allow for the formations of complicated 
structures. 

3.4.3: 2D Quadratic Residue Diffuser (QRD) 

Figure 9 shows 1D Schroeder Quadratic Residue 
Diffuser; one of the most commonly used devices in 
the acoustics industry (Cox, and D'Antonio 2004).  

This single plane diffuser consists of a series of seven 
wells with equal widths and different depths. The 
wells are separated by thin fins. The different depths 
are determined by the quadratic residue 
mathematical sequence, which is calculated based on 
the formula (depth = (well position) ^2 mod N). N is a 
prime number and equals the number of wells.  The 
N7 panel has depth sequence of (0, 1, 4, 2, 2, 4,1).  The 
variations in depth causes sound waves to be 
reflected with phase delay based on the time it takes 
to travel down and up the well. To achieve the desired 
phase delay for a targeted wave, well depth should 
reach half of the wavelength to cause the phase 
change. 

A single-plane 1D diffuser can cause diffuse reflection 
in a two-dimensional plane or into a hemi-disc. In 
order to generate diffuse reflections in three-
dimensional space or into a hemisphere, a multi-
planes 2D diffuser is needed. Figure 10 shows a 2D 
QRD based on N=7X7. This specific array of sequences 
causes diffuse reflections along the vertical and 
horizontal planes as well as along the two diagonal 
directions (Cox, and D'Antonio 2004; Zhu et al. 2017). 
In this case, the diagonal sequence (4, 1, 2, 0, 2, 1, 4) 

 

Figure 9 –1D, N=7 Schroeder Quadratic Residue Diffuser. 

 

 

Figure 10 – 2D, N=7X7 Schroeder Quadratic Residue Diffuser. 
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performs similarly to the original 1D sequence of (0, 
1, 4, 2, 2, 4,1) and has the same Fourier properties. 
The four variations of surface cross-section profiles 
on the vertical and horizontal directions are shown in 
Figure 10 right. 

In this research, the 2D 7X7 Schroeder type QRD 
provides a base-line performance measure for 

comparison. The extended 2D QRD diffuser is 
achieved by repeating the basic 7X7 unit with the 
assumption that it provides a true representative 
sample of the general periodic population.  The depth 
sequence of the 2D QRD is designed to respond to a 
target frequency range between 900 Hz and 4000 Hz.  
Accordingly, the max well depth is 5.86 inch, the well 

 

 

 Figure 11 –For each of the two surfaces (Quasi-Periodic (QP) and the 2D Quadratic Residue Diffuser (QRD)) 18 different 
profiles were generated based on four directions. 

 

 

Figure 12 –The generated sample profiles. 
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width is 1.85 inch and the fin width is 0.11 inch 3. In 
this sequence the well number corresponds to the 
following depths in inches {0 = 0, 1=.97, 2= 1.95, 3= 
2.93, 4= 3.91, 5= 4.88, 6=5.86}.  

3.4.4: Generating sample surface profiles 

For each of the two surface designs (Quasi-Periodic 
(QP) and the 2D Quadratic Residue Diffuser (QRD)) a 
square area of 12ft x12ft sample surface was 
constructed digitally (Figure 11). The profile depth of 
the QP diffuser was kept the same as the build depth 
of the QRD (5.86 inches). For each of the two surfaces 
18 different profiles were generated based on four 
directions (horizontal, vertical and two diagonals) as 
shown in Figure 11. The profiles shown in figure 12 
provide the sample data for testing the quality of the 
diffusers in terms of the spatial uniformity of the 
reflected sound energy. 

 

4.0 RESULTS AND DISCUSSION 
4.1 The Normalized Diffusion Coefficients 

For each surface (QP and QRD), the normalized 
diffusion coefficients, based on diffuse field method 

                                                                 

3 All measurements are calculated using QRDude 
V:3.10:https://www.subwoofer-
builder.com/qrdude.htm 

was plotted for the 18 different sample profiles 
encompassing four different directions (0, 45, 90, and 
135 degrees). The diffuse field method has the 
advantage of obtaining a quick random incident 
coefficient for predicting the performance of surface 
geometry.  Figure 13 shows the normalized diffusion 
coefficient spectrums across the frequency range of 
800 Hz, to 4000 Hz for a total of 4 discrete profile 
samples for each surface (QP and QRD) in the 
horizontal direction (00 degrees). Figure 14 shows the 
normalized diffusion coefficient spectrums across the 
frequency range of 800 Hz, to 4000 Hz for a total of 5 
discrete profile samples for each surface (QP and 
QRD) in the diagonal direction (45 degrees). Figure 15 
shows the normalized diffusion coefficient spectrums 
across the frequency range of 800 Hz, to 4000 Hz for 
a total of 4 discrete profile samples for each surface 
(QP and QRD) in the vertical direction (90 degrees). 
Figure 16 shows the normalized diffusion coefficient 
spectrums across the frequency range of 800 Hz, to 
4000 Hz for a total of 5 discrete profile samples for 
each surface (QP and QRD) in the other diagonal 
direction (135 degrees). The results clearly show that, 
in all tested directions, the normalized diffusion 
coefficients values for the QP surface (Blue line) 
performed better than QRD surface (Red line). 

 

Figure 13 –The normalized diffusion coefficient spectrums across the frequency range of 800 Hz, to 4000 Hz for a total of 4 
discrete profile samples for each surface (QP and QRD) in the horizontal direction (00 degrees). 
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4.2 Spatial Response Plots 

 

Figure 14 – The normalized diffusion coefficient spectrums across the frequency range of 800 Hz, to 4000 Hz for a total of 
5 discrete profile samples for each surface (QP and QRD) in the diagonal direction (45 degrees). 

 

 

 

Figure 15 – The normalized diffusion coefficient spectrums across the frequency range of 800 Hz, to 4000 Hz for a total of 
4 discrete profile samples for each surface (QP and QRD) in the vertical direction (90 degrees).  
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The uniformity of the sound energy reflected from 
surfaces can be measured as a spatial polar response 
in one-third octaves for a specific angle of incidence, 
which is used to characterize the diffuser’s 
performance. For each of the 18 sample profiles, the 
Spatial Response Plot of the reflected sound wave 
was calculated for three different angles of incidence 
(-45, 0 and 45) and for 4 different frequencies (1000 
Hz, 2000 Hz, 3150 Hz and 4000 Hz).  Figure 17 shows 
the spatial response plot for a total of 4 discrete 
sample profiles for each surface (OP and QRD) in the 
horizontal direction (00 degrees). Figure 18 shows the 
spatial response plot for a total of 5 discrete sample 

profiles for each surface (OP and QRD) in the diagonal 
direction (45 degrees). Figure 19 shows the spatial 
response plot for a total of 4 discrete sample profiles 
for each surface (OP and QRD) in the vertical direction 
(90 degrees). Figure 20 shows the spatial response 
plot for a total of 5 discrete sample profiles for each 
surface (OP and QRD) in the other diagonal direction 
(135 degrees). The results show better uniform 
distributions associated with the QP surface.  
Moreover, the scattered polar responses for the QRD 
surface show grating lobes generated by the fact that 
it is periodic. Such lobes increase with the number of 
repetitive units in the surface design. 

 
 
Figure 16 – The normalized diffusion coefficient spectrums across the frequency range of 800 Hz, to 4000 Hz for a total of 5 
discrete profile samples for each surface (QP and QRD) in the other diagonal direction (135 degrees). 

 

 

Figure 17 – The spatial response plot for a total of 4 discrete sample profiles for each surface (OP and QRD) in the horizontal 
direction (00 degrees).  
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Figure 18 –The spatial response plot for a total of 5 discrete sample profiles for each surface (OP and QRD) in the diagonal 
direction (45 degrees).  

 
Figure 19 –The spatial response plot for a total of 4 discrete sample profiles for each surface (OP and QRD) in the vertical 
direction (90 degrees).  

 
Figure 20 –The spatial response plot for a total of 5 discrete sample profiles for each surface (OP and QRD) in the other 
diagonal direction (135 degrees). 
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5.0 New Surface Designs for Architecture Acoustics.  

In this paper, a new approach for acoustical surface 
design based on quasi-periodic formations is 
presented. While this study focuses specifically on 
Penrose-based surfaces, the range of design 
possibilities is wide and allows for variations while 
preserving the quasi-periodic symmetry.  Moreover, 
these designs are built on hierarchical structures that 
allow self-similar systems to emerge, which can be 
used to optimize surface designs for architectural 
acoustics.  Because of the limited number of the basic 
building units, these surfaces can be easily fabricated 
using simple casting processes. The example in Figure 
21 shows a 10-fold quasi-periodic surface design 
consisting of two basic units.  This tiling system can be 
easily fabricated using ceramic slip casting methods 
(figure 21 right). 

Figure 22 demonstrates the process for developing 
the surface design in Figure 21. The construction 
process utilizes a simple relational logic that can be 
used to generate variety of non-periodic hierarchical 
designs (Ajlouni2018).  In general, generating the 
quasi-periodic formations is based on utilizing two 
design components, an underlying structural grid and 
a (seed) units. In this formula, the underlying grid 
provides the relational logic for mapping the locations 
of the repeated seed units and is responsible for 
defining the underlying symmetry.  By manipulating 
the design of the seed units, a wide range of 
variations can be achieved. Generating the structural 
grid is attained by building a progression of nested 
decagrams, in which, every hierarchy is 

proportionally built on the previous one; resulting in 
a self-similar network (Figure 22 a). The intersection 
points on the network define the locations of the seed 
units (Figure 22 b). In this system, the connecting 
formations between the main seed units are flexible 
and will not affect the underlying symmetry (Figure 
22 c). By analyzing the generated design in figure 22 
d, it is possible to define two basic modular units. The 
profile and depth of these two units can be 
customized to respond to specific acoustic design 
challenge.  

Quasi-periodic surface profiles can be applied in many 
design situations to improve the audible 
performance. For example, these designs can be used 
on rear walls of large auditoria to prevent echoes (Cox 
and D’Antonio 2004). Such strategy preserves the 
energy from the sound field, which presents an 
advantage over using absorbers.  Similar diffusers can 
also be used in small rooms with parallel walls to 
eliminate flutter echoes. Small rooms can also benefit 
from similar diffusers, which can promote a passive 
background sound while minimizing the coloration 
effects of early reflections (Cox et al. 2006). 
Moreover, these designs can be used to reduce 
effects of early arriving reflections especially in large 
spaces with low ceilings (Cox and D’Antonio 2004) as 
well as to improve sound performance of long and 
narrow spaces (i.e. subway stations). 

By utilizing the qualities of quasi-periodic structures, 
this research hopes to inspire a new wave of 
acoustical surface designs that allows the designer to 

 

Figure 21 – 10-fold Quasi-periodic surface panel fabricated with porcelain slip casting method using two modular units. 
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encode a wide range of behavioral and aesthetic 
qualities.  

 

6.0 CONCLUSION 

This research is set to explore the potential of using 
quasi-periodic formations for designing surface 
diffusers. A new type of quasi-periodic surface 
diffuser based on 2D Penrose tiling formations is 
developed.  The quality of the diffuse reflection 
caused by the quasi-periodic surface was compared 
to the diffuse reflection caused by Schroeder’s 2D 
Quadratic Residue Diffuser (QRD). The numerical 
results show that the Quasi-periodic diffuser 
performed better than the 2D (QRD). The quasi-
periodic surface designs have two main performative 
qualities, which make them more appealing than 
periodic surface designs. The first advantage relates 
to the fact that quasi-periodic designs do not repeat 

their formations while expanding to fill the surface. 
This quality allows for every quasi-periodic profile to 
have a distinct design, which in turn produces a 
completely distinct sound reflection pattern. This is 
an essential property for an effective scattering 
performance, by which, eliminating the formations of 
orchestrated reflections and thus allowing for a wider 
range of distribution of the reflection rays. Periodic 
designs, on the other hand, repeat the same 
formations based on the number of basic units, which 
often produce the same profiles resulting in the 
reoccurrence of the exact reflection patterns. This can 
amplify certain directions; producing patterns of 
sound reflections (i.e. comb filtering).  The second 
advantage of utilizing the quasi-periodic structures 
for designing sound diffusers, is their encoded self-
similar properties, which allow the same non-
repeating formations to appear at multiple scales. 
This quality has the potential for optimization to 
respond to a wider band of sound wavelengths. 

 

Figure 22 – The process for developing the surface design in Figure 21. 
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Moreover, the introduced process for developing 
quasi-periodic surface designs is flexible and provides 
a wider space for creativity and design aesthetics.  

While these results provide preliminary indicators for 
the diffusion behavior of the sample data, follow-up 
investigations should include the use of physical 
experimentation to validate the numerical results. 
Future research should also investigate the diffusion 
properties of other non-periodic formations, 
including 7-fold, 8-fold, 9-fold, 10-fold, 12-fold, etc., 
as well as designing and testing optimized hybrid 
designs than encode the qualities of Schroeder’s 
profiles within the quasi-periodic arrangements. 

 

Funding information 

This research was funded, in part, by the 2015 University of 
Utah Faculty Research & Creative Grant Projects 

 

References 

Abe, Eiji, Yanfa Yan and Stephen J. Pennycook. 2004. 
Quasicrystals as cluster aggregates. Nat. Mater. 3:759. 
https://doi.org/10.1038/nmat1244 

AFMG Technologies GmbH, 2011-2018. AFMG Reflex - A 
new tool for the design and application of diffuser. Ahnert 
Feistel Media Group. Berlin, Germany. Accessed online at 
http://reflex.afmg.eu/) on July 10 2018. 

Ajlouni, R. 2011. “A long-range hierarchical clustering 
model for constructing perfect quasi-crystalline 
formations”. Philosophical Magazine 91:2728-2738 
https://doi.org/10.1080/14786435.2010.532515 

Ajlouni, R. 2012. “The global long-range order of quasi-
periodic patterns in Islamic architecture”. Acta 
Crystallographica Section A. 68: 235-243. 
https://doi.org/10.1107/S010876731104774X 

Ajlouni, R. 2013. "Octagon-based quasi-crystalline 
formations in Islamic architecture". In Aperiodic Crystals, 
ed. Siegbert Schmid, Ray L. Withers and Ron Lifshitz, 49-
58. Amsterdam: Springer. 

Ajlouni, R. 2017a. “Simulation of sound diffusion patterns 
of fractal-based surface profiles.” In ACADIA 2017: 
DISCIPLINES & DISRUPTION, Proceedings of the 37th 
Annual Conference of the Association for Computer Aided 
Design in Architecture (ACADIA) ISBN 978-0-692-96506-1.  
Cambridge, MA 2-4 November, 2017, pp. 52-61. 

 Ajlouni, R. 2017b. “An ancient rule for constructing 
dodecagonal quasi-periodic formations”. Journal of 
Physics: Conference Series. Volume 809 (1): 
http://iopscience.iop.org/article/10.1088/1742-
6596/809/1/012028/pdf 

  

Ajlouni, R. 2018. “The relational logic behind the 
hierarchical geometry in Islamic art.” In Proceedings of 
ISSC 2018: Logics of Image: Visual Learning, Logic and 
Philosophy of Form in East and West, Kolymbari, Crete, 11-
18. 

Angus, J. A. 1995. “Using modulation phase reflection 
grating to achieve specific diffusion characteristics.” In the 
99 Audio Engineering Society Convention, pre-print 4117. 

Arau-Puchades, H. 2016. "Sound is a wave: A new concept 
of Huygens acoustics diffuser" In Concert Hall Acoustics. 
PROCEEDINGS of the 22nd International Congress on 
Acoustics, Paper ICA2016-32. Buenos Aires – 5 to 9 
September, 2016. 

 Bak, P. 1986. Icosahedral crystals: Where are the atoms?. 
Phys. Rev. Lett. 56: 861–864. 
https://doi.org/10.1103/PhysRevLett.56.861 

Boriskina, SV. 2015. Quasicrystals: Making invisible 
materials. Nat Photonics 9:422–424.  
https://doi.org/10.1038/nphoton.2015.107 

Bradley, David, Erik O. Snow, Kimberly A. Riegel, Zachary 
D. Nasipak, and Andrew S. Terenzi. 2011. “Numerical 
prediction of sound scattering from surfaces with fractal 
geometry: A preliminary investigation.” Proc. Mtgs. 
Acoust. 12: 015010. 

 Cox, T. J. 1996. “Designing curved diffusers for 
performance spaces.” J. Audio. Eng. Soc. 44: 354-364. 

 Cox, T. J. and P. D'Antonio. 1997. “Fractal sound 
diffusers.” Proc. of the 103rd Convention of the Audio Eng. 
Soc. 1- 12. 

 Cox, T. J. and Y. Lam. 1993. “Evaluation of methods for 
predicting the scattering from simple rigid panels.” Applied 
Acoustics. 40: 123-140. https://doi.org/10.1016/0003-
682X(93)90086-L 

Cox, T. J. and Y. Lam. 1994. “Prediction and evaluation of 
the scattering from quadratic residue diffusers.” J. Acoust. 
Soc. Am. 95: 297-305. https://doi.org/10.1121/1.408361 



   
 

 
 ENQUIRY: The ARCC Journal | VOLUME 15 ISSUE 1 | 2018 59 
 http://www.arcc-journal.org/ 

 

Cox, Trevor J. and P. D'Antonio. 2004. Acoustic Absorbers 
and Diffusers: Theory, Design and Application. 1st ed. 
London and New York: Taylor & Francis. 

Cox, Trevor J. and P. D'Antonio. 2009. Acoustic Absorbers 
and Diffusers: Theory, Design and Application. 2nd ed. 
London and New York: Taylor & Francis. 

Cox, Trevor J. and P. D'Antonio. 2017. Acoustic Absorbers 
and Diffusers: Theory, Design and Application. 3rd ed. Boca 
Raton, FL: CRC Press. 

 Cox, T. J., B. I. L. Dalenback, P. D'Antonio, J. J. Embrechts, 
J.Y.Jeon, E. Mommertz and M. Vorl ̈aner. 2006.” A tutorial 
on scattering and diffusion coefficients for room acoustic 
surfaces.” Acta Acustica united with Acustica 92(1):1-15. 

D'Antonio, P. and J. H. Konnert. 1992. “The QRD diffractal: 
A new one- or two-dimensional fractal sound diffusor.” J. 
Audio Eng. Soc. 40: 117-129. 

D'Antonio, P. and T. J. Cox. 2000. “Diffusor application in 
rooms.” Applied Acoustics 60:113–42. 
https://doi.org/10.1016/S0003-682X(99)00054-7 

D'Antonio, P. and T. J. Cox. 2004. Embodiments of 
aperiodic tiling of a single asymmetric diffusive base shape. 
US patent 6772859. 

De Bruijn, N. G. 1981a. “Algebraic theory of Penrose's non-
periodic tilings of the plane I.” Indag. Math. 43:39–52. 
https://doi.org/10.1016/1385-7258(81)90016-0 

De Bruijn, N. G. 1981b. “Algebraic theory of Penrose's non-
periodic tilings of the Plane II.” Indag. Math. 43:53–66. 
https://doi.org/10.1016/1385-7258(81)90017-2 

De Bruijn, N. G. 1981c. “Sequences of zeros and ones 
generated by special production Rules.” Indag. Math. 
43:27-37. https://doi.org/10.1016/1385-7258(81)90015-9 

Dong J.W., M.L. Chang, X.Q. Huang, Z.H. Hang, Z.C. Zhong, 
W.J. Chen and S.V. Boriskina. 2015. “Conical dispersion 
and effective zero refractive index in photonic 
quasicrystals.” Phys. Rev. Lett. 114(16): 163901. 
https://doi.org/10.1103/PhysRevLett.114.163901 

Dubois, Jean-Marie. 2012. “Properties- and applications of 
quasicrystals and complex metallic alloys.” Chem. Soc. Rev. 
41: 6760–6777. https://doi.org/10.1039/c2cs35110b 

Embrechts, J., D. Archambeau, and G. B. Stan. 2001. 
“Determination of the scattering coefficient of random 

rough diffusing surfaces for room acoustics applications.” 
Acta Acustica united with Acustica 87: 482-494. 

 Everest, F. and K. Pohlmann. 2009. Master Handbook of 
Acoustics. 5th ed. New York: McGraw Hill. 

Farner, J. 2014. Acoustic diffusion: Simulation and 
Investigation of 2D Diffusers using the Boundary Element 
Method. BE (Hons) thesis, University of Tasmania: Hobart. 

 Fay, Michael W. 2013. “Acoustics 101 for architects.” The 
Journal of the Acoustical Society of America 134: 4005. 
https://doi.org/10.1121/1.4830611 

Fujiwara K. 1995. “A study on the sound absorption of a 
quadratic-residue type diffuser.” Acta Acust United Acust 
81:370–8. 

 Funkhouser, T.,Tsingos T., Carlbom I., Elko G., Sondhi, M. 
and West, J. 2002. “Modeling sound reflection and 
diffraction in architectural environments with beam 
tracing.” Forum Acusticum, THE 3rd EAA EUROPEAN 
CONGRESS ON ACOUSTICS. Seville, Spain: 8. 

Hargreaves, T., Cox, T. and Lam, Y. 2000. “Surface diffusion 
coefficients for room acoustics: Free-field measures.” J. 
Acoust. Soc. Am. 108: 1710-1720. 
https://doi.org/10.1121/1.1310192 

Henham, W, D. Holloway and L. Panton. 2016. “Broadband 
acoustic scattering with modern aesthetics from random 
3D terrain surfaces generated using the Fourier Synthesis 
algorithm.” In Proceedings of Acoustics 2016: The Second 
Australasian Acoustical Societies Conference, Brisbane, 
Australia: 1-10. 

 Hughes, R.J., J.A. Angus, T.J. Cox, O. Umnova, G.A. 
Gehring, M. Pogson, and D. M. Whittaker. 2010. 
“Volumetric diffusers: pseudorandom cylinder arrays on a 
periodic lattice.” J Acoust Soc Am.128(5):2847-56. 
https://doi.org/10.1121/1.3493455 

Ishii, Y. and T. Fujiwara. 2008. "Electronic Structures and 
Stability of Quasicrystals." In Quasicrystals, edited by T. 
Fujiwara and Y. Ishii, 171- 203. Amsterdam: Elsevier. 
https://doi.org/10.1016/S1570-002X(08)80021-3 

Jazbec, Simon. 2009. "The Properties and Applications of 
Quasicrystals." In Seminar II, university of Ljubljana, 
Ljubljana. http://mafija.fmf.uni-
lj.si/seminar/files/2009_2010/Quasicrystals.pdf 

 Kleiner M. and Tichy J. 2014. Acoustics of Small Rooms. 
London and New York: Taylor & Francis CRC Press. 
https://doi.org/10.1201/b16866 



   
 

 
 ENQUIRY: The ARCC Journal | VOLUME 15 ISSUE 1 | 2018 60 
 http://www.arcc-journal.org/ 

 

Lam, Y. W. 1999, “A boundary integral formulation for the 
prediction of acoustic scattering from periodic structures.” 
J. Acoust. Soc. Am. 105(2): 762-769. 
https://doi.org/10.1121/1.426267 

Lee, H. and T. Sakuma. 2015. “Numerical characterization 
of acoustic scattering coefficients of one-dimensional 
periodic surfaces.” Applied Acoustics 88: 129-136. 
https://doi.org/10.1016/j.apacoust.2014.08.014 

Lee, H., Y. Tsuchiya, and T. Sakuma. 2018. “Acoustic 
scattering characteristics of Penrose-tiling-type diffusers.” 
Applied Acoustics 130:168-176. 
https://doi.org/10.1016/j.apacoust.2017.08.022 

Levine, D. and P. Steinhardt. 1984. “Quasicrystals: a new 
class of ordered structures.” Phys. Rev. Lett. 53: 2477. 
https://doi.org/10.1103/PhysRevLett.53.2477 

Levine, D. and P. Steinhardt. 1986. “Quasicrystals. 1. 
Definition and structure.” Phys. Rev. B 34: 596-616. 
https://doi.org/10.1103/PhysRevB.34.596 

Lord, E.A., S. Ranganathan and U.D. Kulkarni. 2000. 
“Tilings, coverings, clusters and quasicrystals.” Curr. Sci. 78 
(1): 64. 

 Lu, P. and P. Steinhardt. 2007. “Decagonal and quasi-
crystalline tilings in medieval Islamic architecture.” Science 
315:11061110. https://doi.org/10.1126/science.1135491 

MacIá, Enrique. 2006. “The role of aperiodic order in 
science and technology.” Reports on Progress in Physics 
69(2): 397. https://doi.org/10.1088/0034-4885/69/2/R03 

Madison, Alexey E. 2015a “Atomic structure of icosahedral 
quasicrystals: stacking multiple quasi-unit cells.” RSC Adv. 
5: 79279-79297. https://doi.org/10.1039/C5RA13874D 

Madison, Alexey E. 2015b. “Substitution rules for 
icosahedral quasicrystals.” RSC Adv. 5: 5745-5753. 
https://doi.org/10.1039/C4RA09524C 

Makovicky, E. 1992. "800-Year-Old Pentagonal Tiling from 
Maragha, Iran, and the New Varieties of a Periodic Tiling it 
Inspired." In Fivefold Symmetry, ed. I. Hargittai, 67–86. 
Singapore: World Scientific Publishing Co Pte Ltd. 
https://doi.org/10.1142/9789814439497_0004 

Makovicky, E. and N. Makovicky. 2011. “The first find of 
dodecagonal quasiperiodic tiling in historical Islamic 
architecture.” J. Appl. Cryst. 44: 569–573. 
https://doi.org/10.1107/S0021889811013744 

Makovicky, E., F. Rull P’erez and P. Fenoll Hach-Al’ı. 1998. 
“Decagonal patterns in the islamic ornamental art of Spain 
and Morocco. Bolet’” ın Sociedad Espa˜nola Mineralog’ıa. 
21:107-127. 

 Martinsons, M., M. Sandbrink and M. Schmiedeberg. 
2014. “Colloidal trajectories in two-dimensional light-
induced. quasicrystals with 14-fold symmetry due to 
phasonic drifts.” Acta Physica Polonica A 126: 568. 
https://doi.org/10.12693/APhysPolA.126.568 

Mikhael, J., M. Schmiedeberg, S. Rausch, J. Roth, H. Stark 
and C. Bechinger. 2010. “Proliferation of anomalous 
symmetries in colloidal monolayers subjected to 
quasiperiodic light fields.” Proc Natl Acad Sci USA 
107:7214. https://doi.org/10.1073/pnas.0913051107 

Ning, J. F. and G.P. Zhao. 2017. “A fractal study of sound 
propagation characteristics in roughened porous 
materials.” Wave Motion 68: 190-201.  
https://doi.org/10.1016/j.wavemoti.2016.09.013 

Penrose, R. 1974. “The role of aesthetics in pure and 
applied mathematical research.” Bull. Inst. Math. Appl. 10: 
266–271. 

 Qian, Z. W. 2001. “Wave scattering on a fractal surface.”. 
J. Acoust. Soc. Am. 107: 260-262. 
https://doi.org/10.1121/1.428302 

Rigby, J. 2005. “A Turkish interlacing pattern and the 
golden ratio.” Math. School. 34: 16-24. 

Roichman, Y. and D. G. Grier .2005. “Holographic assembly 
of quasicrystalline photonic heterostructures.” Optics 
Express 13: 5434–5439. 
https://doi.org/10.1364/OPEX.13.005434 

Saltzman, P. W. 2008. "Quasi-periodicity in Islamic 
ornamental design". In Nexus VII: Architecture and 
Mathematics Conference Series, ed. Kim Williams. 153–
168. Torino: Kim Williams Books. 

Schmiedeberg, M., C.V. Achim, J. Hielscher, S. C. Kapfer 
and H. Löwen. 2017. “Dislocation-free growth of 
quasicrystals from two seeds due to additional phasonic 
degrees of freedom.” Physical Review E 96: 012602. 

 Schmiedeberg, M. and H. Stark. 2012. “Comparing light-
induced colloidal quasicrystals with different rotational 
symmetries.” J Phys Condens Matter 24: 284101. 
https://doi.org/10.1088/0953-8984/24/28/284101 

Schroeder, M. R. 1975. “Diffuse sound reflection by 
maximum- length sequences.” The Journal of the 



   
 

 
 ENQUIRY: The ARCC Journal | VOLUME 15 ISSUE 1 | 2018 61 
 http://www.arcc-journal.org/ 

 

Acoustical Society of America 57(1):149–150. 
https://doi.org/10.1121/1.380425 

Schroeder, M. 1975. “Binaural dissimilarity and optimum 
ceilings for concert halls: more lateral sound diffusion.” 
The Journal of the Acoustical Society of America 65: 958–
63. https://doi.org/10.1121/1.382601 

Shechtman, D., I. Blech, D. Gratias and J.W. Cahn. 1984. 
“Metallic phase with long range orientational order and no 
translation symmetry.” Phys. Rev. Lett. 53(20): 951-1954. 
https://doi.org/10.1103/PhysRevLett.53.1951 

Socolar, J., P. Steinhardt and D. Levine. 1985. 
“Quasicrystals with arbitrary orientational symmetry.” 
Phys. Rev. B 32: 5547–5550. 
https://doi.org/10.1103/PhysRevB.32.5547 

Steurer, W. and D. S. Widmer. 2007. “Photonic and 
phononic quasicrystals.” J Phys D: Appl Phys 40:R229–
R247. https://doi.org/10.1088/0022-3727/40/13/R01 

Yamamoto, Akiji and Hiroyuki Takakura. 2008. “Recent 
development of quasicrystallography.” In Quasicrystals, 
ed. by T. Fujiwara and Y. Ishii, 11-47. Amsterdam: Elsevier. 
https://doi.org/10.1016/S1570-002X(08)80017-1 

Zhu, Y., Fan, X., Liang, B., Cheng, J. and Jing, Y. 2017. 
“Ultrathin Acoustic Metasurface-Based Schroeder 
Diffuser.” Phys. Rev. X 7: 021034. 
https://doi.org/10.1103/PhysRevX.7.021034 

 


